Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biochemistry ; 62(13): 2055-2064, 2023 07 04.
Article in English | MEDLINE | ID: covidwho-20237409

ABSTRACT

SARS-CoV-2 continues to pose a threat to public health. Main protease (Mpro) is one of the most lucrative drug targets for developing specific antivirals against SARS-CoV-2 infection. By targeting Mpro, peptidomimetic nirmatrelvir is able to inhibit viral replication of SARS-CoV-2 and reduce the risk for progression to severe COVID-19. However, multiple mutations in the gene encoding Mpro of emerging SARS-CoV-2 variants raise a concern of drug resistance. In the present study, we expressed 16 previously reported SARS-CoV-2 Mpro mutants (G15S, T25I, T45I, S46F, S46P, D48N, M49I, L50F, L89F, K90R, P132H, N142S, V186F, R188K, T190I, and A191V). We evaluated the inhibition potency of nirmatrelvir against these Mpro mutants and solved the crystal structures of representative Mpro mutants of SARS-CoV-2 bound to nirmatrelvir. Enzymatic inhibition assays revealed that these Mpro variants remain susceptible to nirmatrelvir as the wildtype. Detailed analysis and structural comparison provided the inhibition mechanism of Mpro mutants by nirmatrelvir. These results informed the ongoing genomic surveillance of drug resistance of emerging SARS-CoV-2 variants to nirmatrelvir and facilitate the development of next-generation anticoronavirus drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Lactams , Leucine , Nitriles , Peptide Hydrolases , Protease Inhibitors/pharmacology
2.
Biochemical and biophysical research communications ; 2023.
Article in English | EuropePMC | ID: covidwho-2288998

ABSTRACT

PF-07321332 and PF-07304814, inhibitors against SARS-CoV-2 developed by Pfizer, exhibit broad-spectrum inhibitory activity against the main protease (Mpro) from various coronaviruses. Structures of PF-07321332 or PF-07304814 in complex with Mpros of various coronaviruses reveal their inhibitory mechanisms against different Mpros. However, the structural information on the lower pathogenic coronavirus Mpro with PF-07321332 or PF-07304814 is currently scarce, which hinders our comprehensive understanding of the inhibitory mechanisms of these two inhibitors. Meanwhile, given that some immunocompromised individuals are still affected by low pathogenic coronaviruses, we determined the structures of lower pathogenic coronavirus HCoV-229E Mpro with PF-07321332 and PF-07304814, respectively, and analyzed and defined in detail the structural basis for the inhibition of HCoV-229E Mpro by both inhibitors. Further, we compared the crystal structures of multiple coronavirus Mpro complexes with PF-07321332 or PF-07304814 to illustrate the differences in the interaction of Mpros, and found that the inhibition mechanism of lower pathogenic coronavirus Mpro was more similar to that of moderately pathogenic coronaviruses. Our structural studies provide new insights into drug development for low pathogenic coronavirus Mpro, and provide theoretical basis for further optimization of both inhibitors to contain potential future coronaviruses.

3.
Biochem Biophys Res Commun ; 657: 16-23, 2023 05 21.
Article in English | MEDLINE | ID: covidwho-2288999

ABSTRACT

PF-07321332 and PF-07304814, inhibitors against SARS-CoV-2 developed by Pfizer, exhibit broad-spectrum inhibitory activity against the main protease (Mpro) from various coronaviruses. Structures of PF-07321332 or PF-07304814 in complex with Mpros of various coronaviruses reveal their inhibitory mechanisms against different Mpros. However, the structural information on the lower pathogenic coronavirus Mpro with PF-07321332 or PF-07304814 is currently scarce, which hinders our comprehensive understanding of the inhibitory mechanisms of these two inhibitors. Meanwhile, given that some immunocompromised individuals are still affected by low pathogenic coronaviruses, we determined the structures of lower pathogenic coronavirus HCoV-229E Mpro with PF-07321332 and PF-07304814, respectively, and analyzed and defined in detail the structural basis for the inhibition of HCoV-229E Mpro by both inhibitors. Further, we compared the crystal structures of multiple coronavirus Mpro complexes with PF-07321332 or PF-07304814 to illustrate the differences in the interaction of Mpros, and found that the inhibition mechanism of lower pathogenic coronavirus Mpro was more similar to that of moderately pathogenic coronaviruses. Our structural studies provide new insights into drug development for low pathogenic coronavirus Mpro, and provide theoretical basis for further optimization of both inhibitors to contain potential future coronaviruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Coronavirus 229E, Human/physiology , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism
4.
Viruses ; 14(9)2022 09 18.
Article in English | MEDLINE | ID: covidwho-2033152

ABSTRACT

The ongoing spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused hundreds of millions of cases and millions of victims worldwide with serious consequences to global health and economies. Although many vaccines protecting against SARS-CoV-2 are currently available, constantly emerging new variants necessitate the development of alternative strategies for prevention and treatment of COVID-19. Inhibitors that target the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation, represent a key class of antivirals. Here, we showed that a peptidomimetic compound with benzothiazolyl ketone as warhead, YH-53, is an effective inhibitor of SARS-CoV-2, SARS-CoV, and MERS-CoV Mpros. Crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV bound to the inhibitor YH-53 revealed a unique ligand-binding site, which provides new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures defined the key molecular determinants required for inhibition and illustrate the binding mode of Mpros from other coronaviruses. In consideration of the important role of Mpro in developing antivirals against coronaviruses, insights derived from this study should add to the design of pan-coronaviral Mpro inhibitors that are safer and more effective.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Peptidomimetics , Antiviral Agents/chemistry , Benzothiazoles/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Ketones , Ligands , Peptide Hydrolases , Protease Inhibitors/chemistry , SARS-CoV-2
5.
J Mol Biol ; 434(16): 167706, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1914637

ABSTRACT

New variants of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) emerged and spread rapidly all over the world, which strongly supports the need for pharmacological options to complement vaccine strategies. Main protease (Mpro or 3CLpro) is a critical enzyme in the life cycle of SARS-CoV-2 and appears to be highly conserved among different genera of coronaviruses, making it an ideal target for the development of drugs with broad-spectrum property. PF-07304814 developed by Pfizer is an intravenously administered inhibitor targeting SARS-CoV-2 Mpro. Here we showed that PF-07304814 displays broad-spectrum inhibitory activity against Mpros from multiple coronaviruses. Crystal structures of Mpros of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor PF-07304814 revealed a conserved ligand-binding site, providing new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures complemented by comprehensive comparison defined the key structural determinants essential for inhibition and illustrated the binding mode of action of Mpros from different coronaviruses. In view of the importance of Mpro for the medications of SARS-CoV-2 infection, insights derived from the present study should accelerate the design of pan-coronaviral main protease inhibitors that are safer and more effective.


Subject(s)
Coronavirus 3C Proteases , Coronavirus Protease Inhibitors , Indoles , Leucine , Pyrrolidinones , SARS-CoV-2 , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Drug Design , Humans , Indoles/chemistry , Indoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Ligands , Protein Binding , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
6.
J Virol ; 96(8): e0201321, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779314

ABSTRACT

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.


Subject(s)
Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/enzymology , Nitriles/chemistry , Nitriles/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
7.
Chin Med J (Engl) ; 134(16): 1967-1976, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1769434

ABSTRACT

BACKGROUND: Innovative coronavirus disease 2019 (COVID-19) vaccines, with elevated global manufacturing capacity, enhanced safety and efficacy, simplified dosing regimens, and distribution that is less cold chain-dependent, are still global imperatives for tackling the ongoing pandemic. A previous phase I trial indicated that the recombinant COVID-19 vaccine (V-01), which contains a fusion protein (IFN-PADRE-RBD-Fc dimer) as its antigen, is safe and well tolerated, capable of inducing rapid and robust immune responses, and warranted further testing in additional clinical trials. Herein, we aimed to assess the immunogenicity and safety of V-01, providing rationales of appropriate dose regimen for further efficacy study. METHODS: A randomized, double-blind, placebo-controlled phase II clinical trial was initiated at the Gaozhou Municipal Centre for Disease Control and Prevention (Guangdong, China) in March 2021. Both younger (n = 440; 18-59 years of age) and older (n = 440; ≥60 years of age) adult participants in this trial were sequentially recruited into two distinct groups: two-dose regimen group in which participants were randomized either to follow a 10 or 25 µg of V-01 or placebo given intramuscularly 21 days apart (allocation ratio, 3:3:1, n = 120, 120, 40 for each regimen, respectively), or one-dose regimen groups in which participants were randomized either to receive a single injection of 50 µg of V-01 or placebo (allocation ratio, 3:1, n = 120, 40, respectively). The primary immunogenicity endpoints were the geometric mean titers of neutralizing antibodies against live severe acute respiratory syndrome coronavirus 2, and specific binding antibodies to the receptor binding domain (RBD). The primary safety endpoint evaluation was the frequencies and percentages of overall adverse events (AEs) within 30 days after full immunization. RESULTS: V-01 provoked substantial immune responses in the two-dose group, achieving encouragingly high titers of neutralizing antibody and anti-RBD immunoglobulin, which peaked at day 35 (161.9 [95% confidence interval [CI]: 133.3-196.7] and 149.3 [95%CI: 123.9-179.9] in 10 and 25 µg V-01 group of younger adults, respectively; 111.6 [95%CI: 89.6-139.1] and 111.1 [95%CI: 89.2-138.4] in 10 and 25 µg V-01 group of older adults, respectively), and remained high at day 49 after a day-21 second dose; these levels significantly exceed those in convalescent serum from symptomatic COVID-19 patients (53.6, 95%CI: 31.3-91.7). Our preliminary data show that V-01 is safe and well tolerated, with reactogenicity predominantly being absent or mild in severity and only one vaccine-related grade 3 or worse AE being observed within 30 days. The older adult participants demonstrated a more favorable safety profile compared with those in the younger adult group: with AEs percentages of 19.2%, 25.8%, 17.5% in older adults vs. 34.2%, 23.3%, 26.7% in younger adults at the 10, 25 µg V-01 two-dose group, and 50 µg V-01 one-dose group, respectively. CONCLUSIONS: The vaccine candidate V-01 appears to be safe and immunogenic. The preliminary findings support the advancement of the two-dose, 10 µg V-01 regimen to a phase III trial for a large-scale population-based evaluation of safety and efficacy. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2100045107, http://www.chictr.org.cn/showproj.aspx?proj=124702).


Subject(s)
COVID-19 , Aged , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Double-Blind Method , Humans , Immunization, Passive , Recombinant Fusion Proteins , SARS-CoV-2 , COVID-19 Serotherapy
8.
Stress ; 25(1): 134-144, 2022 01.
Article in English | MEDLINE | ID: covidwho-1728770

ABSTRACT

The importance of social interactions has been reported in a variety of animal species. In human and rodent models, social isolation is known to alter social behaviors and change anxiety or depression levels. During the coronavirus pandemic, although people could communicate with each other through other sensory cues, social touch was mostly prohibited under different levels of physical distancing policies. These social restrictions inspired us to explore the necessity of physical contact, which has rarely been investigated in previous studies on mouse social interactions. We first conducted a long-term observation to show that pair-housed mice in a standard laboratory cage spent nearly half the day in direct physical contact with each other. Furthermore, we designed a split-housing condition to demonstrate that even with free access to visual, auditory, and olfactory social signals, the lack of social touch significantly increased anxiety-like behaviors and changed social behaviors. There were correspondingly higher levels of the pro-inflammatory cytokine interleukin-6 in the hippocampus in mice with no access to physical contact. Our study demonstrated the necessity of social touch for the maintenance of mental health in mice and could have important implications for human social interactions.


Subject(s)
Housing, Animal , Touch , Animals , Anxiety/psychology , Behavior, Animal , Male , Mice , Social Behavior , Social Isolation/psychology , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL